80 research outputs found

    Exponential Replication of Patterns in the Signal Tile Assembly Model

    Get PDF
    Chemical self-replicators are of considerable interest in the field of nanomanufacturing and as a model for evolution. We introduce the problem of self-replication of rectangular two-dimensional patterns in the practically motivated Signal Tile Assembly Model (STAM) [9]. The STAM is based on the Tile Assembly Model (TAM) which is a mathematical model of self-assembly in which DNA tile monomers may attach to other DNA tile monomers in a programmable way. More abstractly, four-sided tiles are assigned glue types to each edge, and self-assembly occurs when singleton tiles bind to a growing assembly, if the glue types match and the glue binding strength exceeds some threshold. The signal tile extension of the TAM allows signals to be propagated across assemblies to activate glues or break apart assemblies. Here, we construct a pattern replicator that replicates a two-dimensional input pattern over some fixed alphabet of size φ with O(φ) tile types, O(φ) unique glues, and a signal complexity of O(1). Furthermore, we show that this replication system displays exponential growth in n, the number of replicates of the initial patterned assembly

    Templated Synthesis of Peptide Nucleic Acids via Sequence-Selective Base-Filling Reactions

    Get PDF
    The templated synthesis of nucleic acids has previously been achieved through the backbone ligation of preformed nucleotide monomers or oligomers. In contrast, here we demonstrate templated nucleic acid synthesis using a base-filling approach in which individual bases are added to abasic sites of a peptide nucleic acid (PNA). Because nucleobase substrates in this approach are not self-reactive, a base-filling approach may reduce the formation of nontemplated reaction products. Using either reductive amination or amine acylation chemistries, we observed efficient and selective addition of each of the four nucleobases to an abasic site in the middle of the PNA strand. We also describe the addition of single nucleobases to the end of a PNA strand through base filling, as well as the tandem addition of two bases to the middle of the PNA strand. These findings represent an experimental foundation for nonenzymatic information transfer through base filling.Chemistry and Chemical Biolog

    The Evolution of Enzyme Specificity in the Metabolic Replicator Model of Prebiotic Evolution

    Get PDF
    The chemical machinery of life must have been catalytic from the outset. Models of the chemical origins have attempted to explain the ecological mechanisms maintaining a minimum necessary diversity of prebiotic replicator enzymes, but little attention has been paid so far to the evolutionary initiation of that diversity. We propose a possible first step in this direction: based on our previous model of a surface-bound metabolic replicator system we try to explain how the adaptive specialization of enzymatic replicator populations might have led to more diverse and more efficient communities of cooperating replicators with two different enzyme activities. The key assumptions of the model are that mutations in the replicator population can lead towards a) both of the two different enzyme specificities in separate replicators: efficient “specialists” or b) a “generalist” replicator type with both enzyme specificities working at less efficiency, or c) a fast-replicating, non-enzymatic “parasite”. We show that under realistic trade-off constraints on the phenotypic effects of these mutations the evolved replicator community will be usually composed of both types of specialists and of a limited abundance of parasites, provided that the replicators can slowly migrate on the mineral surface. It is only at very weak trade-offs that generalists take over in a phase-transition-like manner. The parasites do not seriously harm the system but can freely mutate, therefore they can be considered as pre-adaptations to later, useful functions that the metabolic system can adopt to increase its own fitness

    (2 S

    No full text

    Neue kationische Lipide fuer die somatische Gentherapie. Teilprojekt: Automatisierte Synthese von Lipidbanken Abschlussbericht

    No full text
    SIGLEAvailable from TIB Hannover: DtF QN1(115,17) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekBundesministerium fuer Bildung und Forschung, Berlin (Germany)DEGerman

    Self-replication at interfaces Final scientific report

    No full text
    Available from TIB Hannover: F98B1604 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEGerman-Israeli Foundation for Scientific Research and Development (GIF), Oberschleissheim (Germany)DEGerman
    corecore